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ABSTRACT

A solution to the detection Fredholm equation for bandlimited
noise and signal is presented that makes use of the dual orthogon-
ality and completeness of the prolate spheroidal wave functions.
Aithqugh data are available only on a finite interval, the detector
in principle achieves the same optimum performance as if the inter-

val were infinite. This apparent anomaly is resolved in an example.
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The Fredholm integral equation

T/2 .
g(t) = R(t - s) f(s) ds, -T/2 < t < T/2 a
-T/2 )

and certain of its variants occur frequently in signal detection and estimation.
The kernel R(t - s) is symmetric positive definite, and the solution can be
formally represented as an infinite summation of the eigenfunctions of R(t - s)l.
These eigenfunctions have been computed only for a few simple kernels, and we
normally assume R(t) has a rational spectrum. Then f(t) can be determined as
the solutioﬁ to a certain linear differential equation with constant coefficients.2

We will show that for g(t) and R(t) bandlimited to |w| < W, the solution
to (1) can be expressed as an infinite suxmnatior_l.of prolate spheroidal wave

functions (PSWF's).
I. The Solution of (1) for Bandlimited g(t) and R(t)

With the definition

~

f(t) |t] < 1/2
fT(t) = ,
0 lt] >0 (2)

the integral equation (1) can be rewritten

f R(t - s) fT(s) ds = g(t). ~-T/2 <t < T/2. (3)

Let fT(m) > é(m) and ¢(w) be the respective Fourier transforms of fT(t) , g(t),
and R(t). The left hand side of (3) is an entire function of t since it is a
linear superposition of bandlimited, and therefore entire, functions R(t - s).

Now g(t) for lt] < T/2 is a piece of an entire function. Hence the left and



right hand sides of (3) are entire functions that cé&ncidé over a finite inter-
val. We conclude that they are equal for all t, and we can Fourier transform
Both sides of (3) to obtain ¢(w) %T(m) = g(w). Now bbth ¢(w) and é(m) are zero
for Im] > W, so that this yields

£(0) = -5-%' : 0)
only for |w| < W. But if we assume that fT(w) is squaré”intégrable, we can then
use the PSWF method3 to find a time limited function that is defined for all w

and equal to fT(w) almost everywhere in (-W, W).

The definitions of wn(t), c, and An(c) are those of Slepian and Pollack.

The PSWF expansion

=e)
= 5
£.G) = Y, a v (To/2W) (5)
n=0
is defined for all w, where
W
- T r 6
-W
Mbreover; by takihg the inverse Fourier transform of (5) we have the desired
“result
«Q
W -n A 2
| (1) 2o a @ vy [t <V
- ( 00 7
£.(t) = (7)
0 lt] > 1/2.

An application of the general form of Parseval's theorem to (6) shows that

a =i (%)V’ [xn(c)]“'/2 1_1(1;) v (1) dt (8)
where - -®
W _
h(t) = %emt dw/27. (9)
W

Hence (7) can be rewritten



‘ ;hn v (/2 It] < 1/2

£.(t) = (10)
0 1t] > T/2,
where hn is the n-th coefficient in the PSWF expansion of h(t). Equations (9)
and (10), our main result, give the solution to (1).

II.  An Example from Detection Theory

A sufficient statistic G for the detection of a known bandlimited signal
s(t) in additive zero-mean, non-white gaussian noise n(t) is |
T
G =\ q(t) v(t) dt (1)
0
where |
T n(t) under hypothesis H
v(e) =
s(t) + n(t) under hypothesis H, . (12)

q(t)is the solution to the integral equation

T
s(t) = R(t -s)q(s)ds, 0<t<T (13)
J 0 ’

where R(t) is the covariance of n(t) .4 With an appropriate change of variables
(12) can be put in the form of (1), and we have the solution (10)-'with q(t + T/2)
= fT(t) and

eIt qu/20. (14)

- iwT/2
h(t) = 5(‘*’;‘2:

To evaluate the performance of this detection scheme we need only compute
the mean and variance of G under the null hypothesis Hj and the alternative

hypothesis ‘Hl.5 We have from (11) and (10) that E[GIHO] = 0 and
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T : T/2
E[GIH,] = | qet) s(t) dt =Zh s(t + T/2) v_(t) dt/r_(c)
0 n=0 )1/ " o

W
S(w)]|? dw A d2
?(w 2m ) (15)
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(15) follows from (9) and an application of Parseval's theorem. A similar com-

putation will show that
var G = d2 (16)

under both hypotheses.

Note that (15) is independent of T. Thus for any T we achieve the same
false-alarm and detection probabilities as for an infinite observation interval.
In realify, because of computational difficulties, we could approach this

. theoretical limit only if nearly all the signal were contained in our observation
interval T. Thie will be verified by an example.

Now consider the signal s(t) = sinc Q(t - to) with 2n/Q << T.

We will take the noise spectral density to be the constant N, over the interval

o] < W. We have

T/2
1 E .
B, = y(ON sinc Q[(—%—T - t) - tly (0 at. (17)
n
-T/2
: _ _1 1. 1.
If we take the PSWF's with c = QT/2, then hn = Nb wn (7T to). If |2T tOL

<< T/2, i.e. s(t)‘is contained in T, hn is nearly zero for n > N.rit

If I%T - t,| 2 T/2, i.e. t, lies outside the interval (0, T), terms of higher

Q
= [2 —2~ﬂ-T].

order will be necessary to compute a detection statistic. However, for

n> the terms

nCrit



T/2

w(t + T/2) y (1) dt/n (18)
-T/2

are extremely sensitive to error since wn(t) =~ 0 in the interval [t| < T/2, and

we cannot hope to improve the detection. Now the statistic

G = E hn vy (19)
n=0

computed with ¢ = QT/2 is not optimum, since from (9) we should use c = WI/2.

However,
(<
T
B =) a v, (w/20) (21)
n=0

is nearly zero for |w| > @ , and we expect the improvement with c = WI/2 to be
negligible, at least for t, << T.

We conclude that the PSWF's provide a convenient analytical tool for
solving (1). That we attain theoretically maximum detectability (T = «) for
only a finite T reflects the fact that all the information in a bandliﬁited
signal is contained in a finite interval. With careful interpretation of the
resplts, however, we see that we cannot in reality attain thié limiting detect-
ability. An example from estimation theory which makes use of an alternative

approach has been preSented.6
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